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Abstract

Deployment of a multi-link beam structure undergoing locking is analyzed in the Timoshenko beam theory. In the

modeling of the system, dynamic forces are assumed to be torques and restoring forces due to the torsion spring at each

joint. Hamilton’s principle is used to determine the equations of motion and the finite element method is adopted to

analyze the system. Newmark time integration and Newton–Raphson iteration methods are used to solve for the non-

linear equations of motion at each time step. The locking at the joints of the multi-link flexible structure is analyzed by the

momentum balance method. Numerical results are compared with the previous experimental data. The angles and angular

velocities of each joint, tip displacement, and velocity of each link are investigated to study the motions of the links at each

time step. To analyze the effect of thickness on the motion of the link, the angle and the tip displacement of each link are

compared according to the various slenderness ratios. Additionally, in order to investigate the effect of shear, the tip

displacements of a Timoshenko beam are compared with those of an Euler–Bernoulli beam.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Deployment of structures, such as the solar arrays, antennas and robot arms, etc. has been studied actively.
In modern applications, the weights of these structures have to be minimized, and hence various advanced
materials have been tried. As a result of weight minimization, these structures will have relatively low
structural rigidity. Researches have been tried to improve the accuracy in the operation of flexible structures.

Meirovitch and Chen [1] analyzed a two-link beam structure using Euler–Bernoulli beam theory. This
analysis supported their study of a flexible space robot whose mission is to ferry some payload in space, and
dock smoothly with an orbiting target. Yigit [2] studied the impact response of beam structures. The first link
was modeled as a rigid-body and the second link was analyzed under the Euler–Bernoulli beam theory.
Further, a spring-dashpot model was used for impact analysis. Yu and Elbestawi [3] studied the dynamic
characteristics of a two-link planar flexible manipulator with large joint angular motions. The links and joints
of the manipulator were assumed to be very flexible and effects by internal structural damping, dry friction at
the joints, and backlash between driving gears were additionally considered. The dynamic equations of this
system, modeled as Euler–Bernoulli beams, were analyzed and verified with the experimental results. Ge et al.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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[4] studied the non-model-based position control of a planar robot, which was modeled by the Euler–Bernoulli
beam theory. Numerical simulations were performed on a two-link flexible robot. Nagaraj and Nataraju [5]
proposed a mathematical model for a flexible system that undergoes locking during motion. They used
Euler–Bernoulli beam theory and the momentum balance method to model the locking at each joint. In addition,
experiments for the two flexible aluminum links with a revolute joint at the end of each link were performed. Fung
and Chang [6] derived the equations of motion for a nonlinear, constrained flexible manipulator with a tip mass
by using Hamilton’s principle. Four dynamic models, based on Timoshenko, Euler–Bernoulli, simple flexure and
rigid-body beam theory, were used to describe flexible two-link or single manipulators. Milford and Asokanthan
[7] analyzed the eigenfrequencies of a system composed of Euler–Bernoulli beams. They derived the
eigenfrequencies of a flexible robot manipulator with a locked elbow and compared the numerical results with
the experimental data. Chen [8] studied a linear dynamic model for multi-link planar flexible manipulators with
an arbitrary number of flexible links. Elastic deformation of each link was modeled by the assumed-mode
method, and the flexible links were treated as Euler–Bernoulli beams. To verify the proposed method, two planar
manipulators were simulated, and results were presented. Hariharesan and Barhorst [9] studied the modeling,
simulation and experimental verification of contact/impact dynamics of a flexible multi-body system by using the
Euler–Bernoulli beam theory. In this work, the contact/impact of a flexible multi-body system undergoing pre-
contact free motion, and the contact/impact and post-impact under constraint motion were modeled. The model
was experimentally validated using a planar flexible manipulator that completed a full motion regime. Escalona et
al. [10] analyzed some aspects of the application of the generalized impulse-momentum balance method to flexible
multi-body systems. Farid and Lukasiewicz [11] studied the dynamic modeling of spatial manipulators based on
Euler–Bernoulli beam theory. The dynamic model was free from the assumption of a nominal motion. In
addition, it considered the coupling effects between the rigid body motion and the elastic deformations of the
links as well as the interaction between flexible links and actuated joint. Naganathan and Soni [12] studied the
effects of coupling on the kinematics and flexibility in manipulators. Governing equations of motion were derived
including those representing the effects of rotary inertia, shear deformation and gross nonlinear motion of each
link. The complete dynamic model was further integrated with a simplistic actuator-servo model. Iura and Atluri
[13] presented an efficient formulation for the dynamics of the Timoshenko beam with finite rotations. They
assumed that the beam was a rotating frame showing small strain to obtain the strain energy of the system.
Cheong et al. [14] investigated the accessibility and identifiability of horizontal vibration in 3-D two-link flexible
robots with system mode approach. They adopted system mode vibration analysis for interpreting the equations
of motion, depending on configurations, in relation to rigid-flexible coupled dynamics. Theodore and Ghosal [15]
discussed the robustness and stability issues in a model-based trajectory tracking controller which uses a finite
element model of the multi-link flexible manipulators. Dynamic equations of motion were obtained by using
Lagrangian formulation. A robust controller design based on the second method of Lyapunov, using simple
quantitative bounds on the model uncertainties, was illustrated.

In the previous works, shear deformation effect was not considered in analysis of a flexible multi-link beam
undergoing locking. The effect of shear deformation on the deployment of relatively thick links may be
significant. Likewise, in this study we investigated the deployment of a multi-link Timoshenko beam
undergoing locking during the motion. Each link has a lumped mass at the tip, and the dynamic forces for
deployment are assumed to be torques and restoring forces, generated by the torsion spring at each joint. Joint
angle, velocity and tip displacement of each link is compared with those for a rigid-body. The comparison of
the results of a two-link Timoshenko beam analysis to the previous experimental data is discussed in detail. In
order to analyze the effect of thickness, the angle and the tip displacement of each link are compared
according to the various slenderness ratios. In addition, to investigate the effect of shear, the tip displacements
of a Timoshenko beam are compared with those of an Euler–Bernoulli beam.

2. Formulation

2.1. System modeling

Fig. 1 shows the motion of a multi-link beam structure, and n denotes the total number of links. The
rotational velocity is fastest at the nth link and lowest at first link. The farther away the link is from a fixed
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Fig. 1. Diagram of the motion for the multi-link Timoshenko beam: (a) Initial state; (b) first motion; (c) first stage of locking; (d) (n�1)th

stage of locking.
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origin (joint 1), the faster its rotational velocity becomes. Thus the locking occurs successively during motion,
from the last two links to the first two links. The initial state of the n-link Timoshenko beam is shown in
Fig. 1(a). All links are folded at known initial angles, and each joint is characterized by the behavior of a
torsion spring. Fig. 1(b) illustrates the first motion of the links. Each link, when released from its initial
configuration, rotates about each joint. This first motion is denoted as the first phase. The first stage of locking
occurs when the angle between the (n�1)th and the nth link is zero, as shown in Fig. 1(c). After locking, the
torque acting at link n disappears. In addition, the nth joint loses its rotational degree of freedom and then
both the (n�1)th and nth link rotate about the (n�1)th joint, like a single flexible link. The motion after first
locking is denoted as the second phase. Likewise, after the (n�1)th locking, the second joint loses its rotational
degree of freedom and all links rotate about the first joint, like a single flexible link, as represented in Fig. 1(d).
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Fig. 2. Model of the multi-link flexible system.
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The motion after (n�1)th locking is denoted as the nth phase. This assumption of mechanism can be achieved
by tuning the springs, inertia of links and preloaded torques.

In this study, the system is assumed to operate in the horizontal plane. Each link is considered to have a
constant cross-sectional area and isotropic material properties.

Fig. 2 shows the multi-link flexible system in its original and deformed configuration. Each link is modeled
based on Timoshenko beam theory. In this, OXY indicates the fixed original coordinate system and OiXiYi is
the moving local coordinate system of link i. The relative joint angle of each link is denoted by yi. The bending
deflection and the rotation angle of the normal to the neutral axis, with respect to its local coordinate, are
given as wi and ci, respectively. The local coordinate, length and tip mass of link i are denoted by (xi, yi), li and
mi, respectively.

The vector roi indicates the position of any point on link i from the origin of the fixed coordinate system of
the link

roi ¼ ri þ TiRi, (1)

where the vector ri represents the position of the origin for the local coordinate of link i and the vector Ri

presents the elastic deformation of link i with respect to the local coordinate system. In addition, Ti is the
transformation matrix that relates the local coordinate system to the fixed one:

Ri ¼
xi þ ui

yi þ wi

( )
; Ti ¼

cosðbiÞ � sinðbiÞ

sinðbiÞ cosðbiÞ

" #
.

In these equations, ui(xi, t) is the displacement in the x directions of link i, and bi is the rotation of joint i with
respect to the original coordinate system

uiðxi; tÞ ¼ �yiciðxi; tÞ; bi ¼

yi for i ¼ 1Pi

j¼1

yj þ
Pi�1
j¼1

ðcjÞlj
for i ¼ 2; 3; 4; . . . ; n

8><
>:

where ðcjÞlj
is the rotation angle of the normal to the neutral axis on the tip of link j, and i is the total number

of joints in the system
The position vector romi of the tip mass of link i is given by

romi ¼ ri þ TiRli
, (2)
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where the vector Rli
, presents the elastic deformation of tip mass on link i with respect to the local coordinate

system

Rli
¼ fli ðwiÞli

gT,

where ðwiÞli
is the bending deflection of tip mass on link i with respect to the local coordinate system.

The total kinetic energy of this system is comprised of the motion of the links, tip masses and joints. From
Eq. (1), the kinetic energy Tki of link i is given by

Tki ¼
1

2

Z
vi

ri

droi

dt

� �T
droi

dt

� �
dvi, (3)

where ri is the mass density per unit volume of link i.
From Eq. (2), the kinetic energy Tmi of each tip mass located at the tip of link i is given by

Tmi ¼
1

2
mi

dromi

dt

� �T
dromi

dt

� �
. (4)

The kinetic energy of joint i is given by

Tli ¼
1
2Ji
_b
T

i
_bi, (5)

where Ji is the joint rotary inertia, and _bi is the angular velocity of joint i.
Therefore, the total kinetic energy T of the system can be expressed as

T ¼
Xn

i¼1

ðTki þ Tmi þ TliÞ, (6)

where n is the total number of links in the system.
The total potential energy of the multi-link beam system is divided into two parts. The strain energy

Vli due to the elastic deformations of links and the potential energy Vs due to the torsion springs at the
joints.
First, the strain energy Vli of link i is given by

Vli ¼
1

2

Z li

0

EiI i
dci

dxi

� �2

þ kiGiAi
dwi

dxi

� ci

� �2

dxi, (7)

where Ei, Ii, ki, Gi and Ai denote Young’s modulus, moment of inertia, shear deformation coefficient, shear
modulus of elasticity and cross-sectional area of link i, respectively.

Second, the potential energy Vs due to the torsion spring at joint i is given by

Vs ¼
1

2

Xnj

i¼1

ksiðy0i � yiÞ
2, (8)

where ksi is the torsion spring stiffness and y0i is the pre-rotation angle of the joint i.
Therefore, total potential energy V of the system can be expressed as

V ¼ V s þ
Xn

i¼1

Vli. (9)

The virtual work of the system is expressed as

dW ¼
Xnj

i¼1

tidyi, (10)

where ti is friction torque due to the spring force exerted by the rocker arm at joint i [2,3,5] and nj indicates the
total number of joints in the system.
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Each joint of link i has only a rotational degree of freedom, thus the boundary conditions at the link i are as
follows:

w0i ¼ 0 and c0i ¼ 0 at xi ¼ 0. (11)

Equations of motion can be derived by using Hamilton’s principle as follows:Z t2

t1

ðdT � dV � dW Þ dt ¼ 0. (12)

By using the finite element method, the following discrete equation of motion is obtained:

½MðqÞ�f€qg þ ½Cðq; _qÞ�f_qg þ ½K�fqg ¼ fWg, (13)

where fqg is fw1 w2 . . .wnd
c1 c2 . . .cnd

y1 y2 . . . ynj
gT, and nd is the total number of nodes and nj is the total

number of joints in the system. [M(q)] is the mass matrix, containing the rigid body terms, coupling of the rigid
body and flexible variables, and the terms of only the flexible variables. ½Cðq; _qÞ� is the matrix composed of
Coriolis and centripetal terms, [K] is the stiffness matrix containing the stiffness coefficients of the torsion
spring and the links, and {W} is the matrix containing the terms for torques.

Newmark time integration method [16] and Newton–Raphson iteration methods are applied to solve the
nonlinear equation of motion at each time step.

2.2. Mathematical model for locking

The first stage of locking occurs, when the angle between link (n�1) and link n is zero. In the same way, the
ith stage of locking occurs, when the angle between link (n�i) and link (n�i+1) is zero ði ¼ 1; 2; 3; . . . ; n� 1Þ.
Based on the impulse momentum law, post-locking f_qg is obtained by using the momentum balance method
[5,10]. This method assumes instantaneous impact and continuous system configuration during impact.
Additionally the velocities are assumed to be bounded during impact. From this method, following equations
can be obtained:

fqmþ1g ¼ fqmg, (14)

where the subscript m+1 indicates {q} just after locking and m indicates {q} just before locking.
When the first locking occurs, the matrix {W} from Eq. (13) is expressed as

fWg ¼ fWag þ fWpg; fWpg ¼ Fp ds=dq, (15)

where {Wa} is the set of generalized external forces and {Wp}, Fp and s indicate the set of impulse forces due to
impact, the impact force and the Cartesian coordinate, respectively [5,10,17].

Integrating over the impact period t, the equation of motion (13) yields,Z tþDt

t

½MðqÞ�f€qg dtþ

Z tþDt

t

½Cðq; _qÞ�f_qg dtþ

Z tþDt

t

½K�fqg dt ¼

Z tþDt

t

fWg dt. (16)

From the assumptions of the momentum balance method, as the contact duration approaches zero, the
integral of the two terms {Wa} and ½Cðq; _qÞ� approaches zero, as well. In addition, other matrices can be
expressed as the following:

lim
Dt!0

Z tþDt

t

½MðqÞ�f€qg dt ¼ ½MðqÞ�Df_qg; lim
Dt!0

Z tþDt

t

fWg dt ¼
ds

dq
lim
Dt!0

Z tþDt

t

fFpg dt. (17)

From Eqs. (16) and (17), the following equation is derived:

½MðqÞ�Df_qg ¼
ds

dq
lim
Dt!0

Z tþDt

t

fFpg dt: (18)

Hence, f_qg after first locking can be written as

f_qmþ1g ¼ f_qmg þ Df_qg. (19)

f_qg after ith locking can be obtained in the same manner.
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2.3. Equations of motion after locking

For the n-link flexible system, when the angle between link (n�1) and link n is zero, the first stage of locking
has occurred, as shown in Fig. 1(c). After the first locking, the torque acting at link n disappears. In addition,
nth joint loses its rotational degree of freedom and link (n�1), and n rotate about the (n�1)th joint, like a
single flexible link (second phase). Thus the two links of length ln�1 and ln form a single link of length
ðln�1 þ lnÞ and the n-link flexible system turns into a (n�1)-link flexible system. The initial coordinates and
velocities of this system are obtained by the momentum balance method. The equation of the (n�1)-link
flexible system is derived in the similar manner as that of the multi-link flexible system described before.

The equation of motion for a (n�1)-link flexible link can be written as

½M2ðq2Þ�f€q2g þ ½C2ðq2; _q2Þ�f_q2g þ ½K2�fq2g ¼ fW2g, (20)

where {q2} is fw1 w2 . . .wnd
c1 c2 . . .cnd

y1 y2 . . . ynj�1g
T, and nd is the total number of nodes and nj is the

total number of joints in the system.
Similarly, after ith locking the torque acting at link (n�i+1) disappears. In addition, (n�i+1)th joint loses

its rotational degree of freedom and then link (n�i) and (n�i+1) rotate about the (n�i)th joint, like a single
flexible link (i+1)th phase. Thus the two links of length ln�i and ð

Pi
k¼1ln�kþ1Þ form a single link of length

ðln�i þ
Pi

k¼1ln�kþ1Þ and the (n�i+1)-link flexible system turns into a (n�i)-link flexible system. Thus the
equation of the multi-link flexible system after ith locking is given by

½Miþ1ðqiþ1Þ�f€qiþ1g þ ½Ciþ1ðqiþ1; _qiþ1Þ�f_qiþ1g þ ½Kiþ1�fqiþ1g ¼ fWiþ1g, (21)

where {qi+1} is fw1 w2 . . .wnd
c1 c2 . . .cnd

y1 y2 . . . ynj�ig
T.

Similarly, after (n�1)th locking, the second joint loses its rotational degree of freedom and all links rotate
about the first joint, like a single flexible link of length

Pn
k¼1lk (nth phase). In this phase, the equation of

motion can be derived as

½MnðqnÞ�f€qng þ ½Cnðqn; _qnÞ�f_qng þ ½Kn�fqng ¼ fWng, (22)

where {qn} is fw1 w2 . . .wnd
c1 c2 . . .cnd

y1gT.

3. Numerical results and discussions

In order to demonstrate the performance of the present results, the deployment of a two-link beam structure
undergoing locking is compared to those of previous experimental data. Further, the effects of slenderness
ratio and shear on the dynamics of a two-link beam structure are investigated, in detail.

3.1. Code verifications

In order to verify the present code, an example system of a two-link Timoshenko beam is modeled. Table 1
presents the physical parameters of the system and their actual values, as were used in the experimental setup
[5]. Finite element method was used to model the system and a four-node Lagrangian beam element is used.

Fig. 3 presents the resulting angle and angular velocity at each joint for the rigid-body model, flexible model
and experimental data [5] during the first phase. The time required for the second joint to reach 01 in the
flexible system is 2.921 s, slightly longer than that of the rigid-body model (2.895 s) and shorter than that of the
experimental data (3.07 s). This is because some part of energy goes into the flexible deformation of the beams
in the flexible system. When the angle of the second joint is zero, the angle of the first joint reaches 62.711 for
the flexible model, 62.691 for the rigid-body model and 58.21 for the experimental data. The responses of joints
for the rigid-body and flexible model are very close because of the small tip displacements of flexible links;
however, the response of the angular velocity, of the flexible model shows oscillatory motion about the
trajectory of the rigid-body model.

Fig. 4 shows the response of the tip displacement and the velocity of each link in the flexible model during
the first phase. The maximum tip displacement of link 1 is 0.696% of l1 and that of link 2 is 0.737% of l2. This
is because the rotating velocity of link 2 is faster than that of link 1.



ARTICLE IN PRESS

Table 1

System parameters

Link 1 Link 2

Length (m) l1 ¼ 1:0064 l2 ¼ 0:945
Cross-sectional area (m2) A1 ¼ 1:7808� 10�4 A2 ¼ 1:7748� 10�4

Thickness (m) t1 ¼ 4:4519� 10�3 t2 ¼ 4:4370� 10�3

Area moment of inertia (m4) I1 ¼ 2:9411� 10�10 I2 ¼ 2:9117� 10�10

Rotary inertia (kgm2) J1 ¼ 8:5948� 10�4 J2 ¼ 9:2560� 10�4

Mass density (kg/m3) r1 ¼ 2700 r2 ¼ 2700

Young’s modulus (N/m2) E1 ¼ 0:7� 1011 E2 ¼ 0:7� 1011

Tip mass (kg) mp1 ¼ 1:2 mp2 ¼ 0:336
Torque at joint (Nm) t1 ¼ 3:825� 10�2 t2 ¼ 0:0225

Torsion spring stiffness (Nm/rad) ks1 ¼ 0:0789 ks2 ¼ 0:0768
Pre-rotation angle (deg) y01 ¼ 300 y02 ¼ 60
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Fig. 3. Angle and angular velocity of each joint during the first phase; — flexible model, - - rigid-body model, * experimental data [5].
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Fig. 5 describes the angle and angular velocity of joint 1 during the second phase. There is a significant
difference in the responses for these two parameters between the flexible and rigid-body model during the
second phase. Angle of joint 1 in the rigid-body model increases linearly after locking while that in the flexible
model, oscillates and increases only slightly similar to that of the experimental data. However, there is a little
difference between the results of the flexible model and experimental data after locking, the joint 1 angle of the
experimental data oscillates at a higher amplitude compared to that of the flexible model. This may be due to
the structural damping of arms, the backlash effects, friction and other disturbances in the experimental model
which were not modeled in the numerical simulations.
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The tip displacement and velocity of each link in the flexible model during the second phase are represented
in Figs. 6 and 7. The tip displacement of the second phase is larger than that of the first phase. The maximum
tip displacement of links 1 and 2 are 2.455% and 8.012% of total length (l1+l2), respectively. When the second
joint locks in the flexible model, some of link 2’s kinetic energy is transformed into elastic and kinetic energy,
which increase tip displacement and velocity after locking. Thus the joint of a single flexible link oscillates
during motion.
Fig. 6. Tip displacement and the velocity of link 1 during the second phase.

Fig. 7. Tip displacement and the velocity of link 2 during the second phase.
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3.2. Effect of slenderness ratio

To analyze the effect of thickness on the dynamics of a two-link beam structure, the angle and tip
displacement of each link are compared as the slenderness ratio (t/l) is varied. The length and the cross-
sectional area of each link are assumed to be constant. Thus the mass of the structure is not changed according
to the various slenderness ratios. The slenderness ratios used in code verifications are 0.0044 for link 1 and
0.0047 for link 2.

Fig. 8 shows the angle of each joint during the first phase as the slenderness ratios are increased by 1, 2, 5
and 10 times. This shows that the varied slenderness ratios have almost no effect on the angle of each joint and
locking time. The code verification produced similar result, in that, the angle of each joint in the flexible model
is very close to that of the rigid-body model during the first phase. Thus, before locking, it is observed that the
angle of each joint and locking time for varied slenderness ratio are hardly changed when the mass of the
structure is assumed to be constant.

Fig. 9 shows the tip displacement of each link as the slenderness ratio is varied during the first phase. In this,
S.R. denotes the slenderness ratio of each beam for a two-link beam structure. When the slenderness ratio is
increased, the tip displacement of each link decreases, and amplitude decreases and frequency increases. When
the slenderness ratio is 10 times the input data, the tip displacement of each link approaches zero and the
motion of flexible system becomes similar to that of rigid-body model. This is because as the slenderness ratio
is increased, the beam becomes stiffer and tends towards rigid. As a result, the slenderness ratio is a very
important factor for displacement before locking.

Fig. 10 describes the angle of joint 1 as the slenderness ratio is varied during the second phase. When the
slenderness ratio is increased, the amplitude decreases and the frequency increases. When the slenderness ratio
is increased 2–5 times, the angle of joint 1 decreases; however, when the slenderness ratio is increased 10 times,
the angle of joint 1 becomes larger than that of when the slenderness ratio was increased five times but smaller
than that of when the slenderness ratio was increased two times. This shows the convergence of the angle for
joint 1 to that of rigid-body model.

The results show that the slenderness ratio does not affect the system motion significantly with no locking
but does so significantly if there is locking. Therefore, the slenderness ratio has almost no effect on pre-lock
deployment, however becomes a very important factor of post-lock deployment.
Fig. 8. Angle of joints during the first phase at various slenderness ratio.
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Fig. 9. Tip displacement of each link during the first phase according to slenderness ratio.
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The tip displacement of each link according to the slenderness ratio during the second phase is shown in
Fig. 11. In this figure, S.R. indicates the slenderness ratio of a single link beam. Like the responses during the
first phase, the tip displacement of each link decreases, and the amplitude decreases and the frequency
increases as the slenderness ratio is increased. When the slenderness ratio is 10 times the input data, the tip
displacement of each link approaches zero and the motion of flexible system becomes similar to that of rigid-
body model.

Thus, the slenderness ratio is a very important factor of pre- and post-lock displacement.
3.3. Effect of shear

In order to investigate the effect of shear, the tip displacements of a two-link Timoshenko beam are
compared with those of a two-link Euler–Bernoulli beam when the slenderness ratios are two times the input
data.

Fig. 12 describes the tip displacement of each link during the first phase. This shows that the response of an
Euler–Bernoulli beam is very similar to that of a Timoshenko beam. Thus, the shear has almost no effect on
the deployment of the structure before locking.

The tip displacements of link 1, 2 during the second phase are depicted in Fig. 13. The response during the
second phase is very different comparing to that during the first phase. It is found that the effect of shear is
considerable during the second phase. The tip displacement of each link for an Euler–Bernoulli beam is larger
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Fig. 10. Angle of joint 1 during the second phase according to slenderness ratio.

Fig. 11. Tip displacement of each link during the second phase according to slenderness ratio.
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Fig. 12. Tip displacement of each link during the first phase: (a) two-link Timoshenko beam; (b) two-link Euler–Bernoulli beam.

Fig. 13. Tip displacement of each link during the second phase: (a) two-link Timoshenko beam; (b) two-link Euler–Bernoulli beam.
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than that for a Timoshenko beam conspicuously. However, the frequencies of the tip displacements for an
Euler–Bernoulli beam are similar to those for a Timoshenko beam.

As a result, shear has great effect on the deployment of the structure which undergoes locking.
4. Conclusions

The deployment of a multi-link beam structure which undergoes locking is compared to that of the previous
work and the effects of slenderness ratio and shear are investigated.

The responses of the model for Timoshenko beam follow the experimental data more approximately than
those of the rigid-body model. There is only a slight difference in the responses between the flexible and rigid-
body model during the first phase, but difference becomes more significant after locking. This shows that the
deployment of a multi-link system undergoing locking must be analyzed as a flexible system.

In order to investigate the effect of thickness in the dynamics of a two-link beam structure, the angle and tip
displacement of each link is compared as the slenderness ratio is varied. The length and the cross-sectional
area of each link are assumed to be constant. As a result, during the first phase the slenderness ratios have
almost no effect on the angle of each joint and locking time. On the other hand, the slenderness ratios affected
the tip displacement of each link considerably. As the slenderness ratio is increased, the tip displacement and
the amplitude of each link decrease, however, the frequency increases. During the second phase, as the
slenderness ratio is increased, the amplitude of the angle for joint 1 decreases and the frequency increases. The
tip displacement of each link during the second phase is similar to that of the first phase. This shows that the
responses after locking change greatly according to the slenderness ratio. In view of the results so far achieved,
the slenderness ratio has great effect on the deployment after locking, and also on the displacement of each
link before and after locking.

To analyze the effect of shear, the tip displacements of a two-link Timoshenko beam are compared to those
of a two-link Euler–Bernoulli beam. The shear has almost no effect on the tip displacements of the structure
before locking. However, it has great effect on the tip displacements of the structure after locking. The tip
displacement of each link for an Euler–Bernoulli beam is larger than that for a Timoshenko beam
conspicuously, after locking. As a result, shear has great effect on the deployment of the system which
undergoes locking.
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